翻訳と辞書
Words near each other
・ Lebesby Church
・ Lebesgue (crater)
・ Lebesgue constant
・ Lebesgue constant (interpolation)
・ Lebesgue covering dimension
・ Lebesgue differentiation theorem
・ Lebesgue integrability
・ Lebesgue integration
・ Lebesgue measure
・ Lebesgue point
・ Lebesgue space
・ Lebesgue spine
・ Lebesgue's decomposition theorem
・ Lebesgue's density theorem
・ Lebesgue's lemma
Lebesgue's number lemma
・ Lebesgue–Stieltjes integration
・ Lebesque
・ Lebet
・ Lebetain
・ Lebetus
・ Lebeuville
・ Lebewohl, Fremde
・ Lebhar IMP Pairs
・ Lebia
・ Lebia analis
・ Lebia chlorocephala
・ Lebia cruxminor
・ Lebia cyanocephala
・ Lebia darlingtoniana


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lebesgue's number lemma : ウィキペディア英語版
Lebesgue's number lemma
In topology, Lebesgue's number lemma, named after Henri Lebesgue, is a useful tool in the study of compact metric spaces. It states:
:If the metric space (X, d) is compact and an open cover of X is given, then there exists a number \delta > 0 such that every subset of X having diameter less than \delta; is contained in some member of the cover.
Such a number \delta is called a Lebesgue number of this cover. The notion of a Lebesgue number itself is useful in other applications as well.
== Proof ==

Let \mathcal U be an open cover of X. Since X is compact we can extract a finite subcover \ \subseteq \mathcal U.
For each i \in \, let C_i := X \setminus A_i and define a function f : X \rightarrow \mathbb R by f(x) := \frac \sum_^n d(x,C_i).
Since f is continuous on a compact set, it attains a minimum \delta.
The key observation is that \delta > 0.
If Y is a subset of X of diameter less than \delta, then there exist x_0\in X such that Y\subseteq B_\delta(x_0), where B_\delta(x_0) denotes the radius \delta ball centered at x_0 (namely, one can choose as x_0 any point in Y). Since f(x_0)\geq \delta there must exist at least one i such that d(x_0,C_i)\geq \delta. But this means that B_\delta(x_0)\subseteq A_i and so, in particular, Y\subseteq A_i.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lebesgue's number lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.